ФІЗИКА. Вчимося розв'язувати задачі. "СУЧАСНА ФІЗИКА". Компенсаційний курс
Розділ 4. Атомне ядро
4.3. Природня радіоактивність
|
На загал атомні ядра є міцні, проте ядра окремих ізотопів деяких хімічних елементів є нестійкі й спонтанно (самодовільно) перетворюються на ядра інших елементів. Така властивсть називається природньою радіоактивністю, а саме явище – радіоактивним розпадом. Радіоактивниий розпад супроводжується радіоактивним випромінюванням, якого в природі існує три види: \(\alpha-\), \(\beta-\) і \(\gamma-\). \({\mathbf{\alpha-}}\) випромінювання являє собою потік \(\alpha-\)частинок, – ядер нукліду Гелію \({}_{2}^{4}\mathrm{He}\) і мають позитивний електричний заряд \(q_{\alpha}=3,2\cdot{10}^{-19}\) Кл і масу, що практично збігається з масою нейтрального атома: \(m_{\alpha}=4,00260\) а.о.м. \({\mathbf{\beta-}}\) випромінювання це потік \(\beta-\)частинок, тобто електронів. Через це \(\beta-\)частинки позначають ще й як \(e^{-}\) чи \({}_{-1}^ {0}e\). \({\gamma-}\) випромінювання це дуже жорстке електромагнітне випромінювання, тобто потік \(\gamma-\)квантів, – фотонів із дуже високою енергією (> 105 еВ) і малою довжиною хвилі (\(<5\cdot{10}^{-12}\) м). Кінетичні енергії \(\alpha-\), \(\beta-\)частинок і енергія \(\gamma-\)квантів дуже великі. Тому радіоактивному випромінюванню властива сильна біологічна дія, і воно небезпечне для життя. Особливо це стосується \(\gamma-\)випромінювання, що має високу проникаючу здатність. Висока проникаюча здатність \(\gamma-\)випромінювання пояснюється тим, що \(\gamma-\)кванти (фотони) є нейтральними частинками. |
|
Відповідно до видів і назв частинок, що випускаються, розрізняють види і схеми радіоактивного розпаду. Перетворення ядер з випромінюванням \(\alpha-\)частинок називається \(\alpha-\)розпадом, а з випромінюванням \(\beta-\)частинок – \(\beta-\)розпадом. Ядерні процеси, як і будь-які інші, підпорядковані універсальним законам збереження імпульсу, енергії, електричного заряду. Крім того існує ще низка специфічних законів збереження, що діють у світі елементарних частинок. Зокрема, це закон збереження кількості нуклонів, відповідно до якого при різних перетвореннях ядер загальна кількість нуклонів не змінюється. Закони збереження заряду і кількості нуклонів означають, що
Цим визначаються схеми \(\alpha-\) і \(\beta-\)розпаду заданого нукліда X з утворенням нового нукліда Y: 1. \(\alpha-\)розпад:
1. \(\beta-\)розпад:
Зарядове і масове числа нукліда Y, що утворюється, визначається зазначеними законами збереження. Зарядове число ядра визначає місце елемента в періодичній системі. Тому зі схем (21.9) і (21.10) випливають так звані правила зміщення:
Як при \(\alpha-\)розпаді, так і при \(\beta-\)розпаді ядро, що утворилося звичайно перебуває в збудженому стані. Переходячи в основний стан, воно випускає один або декілька \(\gamma-\)квантів. Тому обидва види розпаду супроводжуються \(\gamma-\)випромінюванням. При \(\beta-\)розпаді випускається ще одна частинка, яка називається антинейтрино. Але в задачах елементарної фізики це не враховується. |
|
З часом кількість радіоактивного нукліда зменшується відповідно до закону радіоактивного розпаду:
де N – кількість радіоактивних ядер, що не розпалися на даний момент часу t, N0 – їх кількість у момент початку відліку, e = 2,718… – основа натуральних логарифмів. Коефіцієнт \(\lambda\) (1/с) називається сталою розпаду, яка є індивідуальною характеристикою кожного радіоактивного нукліду. Замість \(\lambda\) часто використовують обернену величину
яка називається тривалістю життя нукліду. З урахуванням виразу (21.12) закон радіоактивного розпаду записується так:
Величина \(\tau\) має простий зміст. При \(t=\tau\)
тобто можна сказати, що тривалість життя – це проміжок часу протягом якого кількість радіоактивних ядер зменшується в \(e\approx{2,72}\) рази. (див. рис.21.3). На практиці швидкість розпаду радіоактивного нукліду характеризують періодом піврозпаду T – проміжком часу, протягом якого розпадається половина вихідної кількості радіоактивного нукліду (див. рис.21.3) Період піврозпаду T пов'язаний з тривалістю життя співвідношенням
Закон розпаду через T записується у вигляді
|