ФІЗИКА. Вчимося розв'язувати задачі. "ОПТИКА". Компенсаційний курс

Приклади розв'язування задач

Інтерференція світла

Задача 17.1.  Два точкові когерентні джерела світла розташовані на відстані l = 0,5 м від екрана. Довжина хвилі світла \(\lambda=620\) нм. Відстань між джерелами d = 0,4 мм.  Визначити відстань \(\Delta{x}\) між інтерференційними максимумами на екрані.

Задача 17.2. На тонку плівку з показником заломлення n = 1,33 падає паралельний пучок білого світла під кутом \(\alpha=30^{\circ}\)Визначити мінімальну товщину плівки d, при якій відбите світло з довжиною хвилі \(\lambda_{1}=0,64\) мкм максимально підсилене внаслідок інтерференції, а з довжиною хвилі \(\lambda_{2}=0,40\) мкм – зовсім не відбивається. Врахувати, що при відбиванні від оптично більш густого середовища фаза відбитої хвилі стрибком змінюється на \(\delta=\pi\).

Задача 17.3. Скляний клин (показник заломлення n = 1,5) має кут при вершині \(\varphi=2^{\prime}\). На клин падає нормально монохроматичне світло з довжиною хвилі \(\lambda=600\) нм. Визначити відстань x між сусідніми темними інтерференційними смугами, що спостерігаються у відбитих променях.

 

Задача 17.1.

Два точкові когерентні джерела світла розташовані на відстані l = 0,5 м від екрана. Довжина хвилі світла \(\lambda=620\) нм. Відстань між джерелами d = 0,4 мм.

Визначити

відстань \(\Delta{x}\) між інтерференційними максимумами на екрані.

 

Дано:

l = 0,5 м
\(\lambda=620\) нм = 6,2·10-7 м
d = 0,4 мм = 0,4·10-3 м
\(\Delta{x}\) - ?

Розв’язання

Припустимо, що в точці А на екрані (рис.1) спостерігається максимум інтерференції. Це можливо, якщо різниця ходу \(\Delta\) двох променів S1A та S2A задовольняє умові (17.8a):

 

\(\Delta=\pm{m}\lambda\),

(1)

де m – цілі числа. Знайдемо різницю ходу, скориставшись геометричною побудовою на рис.1. З трикутників S1AB та S2AC за теоремою Піфагора маємо:

S1A2 = S1B2 + AB2;     S2A2 = S2C2 + AC2.

Відрізки AB та AC відповідно дорівнюють

AB = AD - \(\frac{1}{2}\)BC;    AC = AD + \(\frac{1}{2}\)BC.

Позначимо AD = x. Оскільки S1B = S2C = l, BC = d, маємо:

 

S1A2 = l2 + (xd/2)2;    S2A2 = l2 +(x + d/2)2.

(2)

 Різницю квадратів (S2A2 – S1A2) запишемо у вигляді:

S2A2 – S1A2 = (S2A – S1A)(S2A + S1A).

Інтерференційна картина в таких випадках завжди спостерігається поблизу центра екрана (точка D на рис.1), тобто \(x\ll{l}\). За цих умов S2A + S1A \(\approx\) 2l, S2A – S1A = \(\Delta\)отже

S2A2 – S1A2 = \(\Delta\cdot{2l}\).

Підставимо сюди вирази (2) і дістанемо:

\(l^{2}+(x+d/2)^{2}-l^{2}-(x-d/2)^{2}=\Delta{2l}\)    \(\Rightarrow\)    \(x=\frac{\Delta\cdot{l}}{d}\).

Врахувавши умову (1), знаходимо, що точка A, в якій спостерігається максимум інтерференції з номером m, віддалена від точки D на відстань

\(x_{m}=\frac{m\lambda{l}}{d}\).

Точка А1, в якій спостерігається максимум з номером (m + 1), віддалена від точки О на відстань

\(x_{m+1}=\frac{(m+1)\lambda{l}}{d}\),

отже відстань між максимумами

\(\Delta{x}=x_{m+1}-x_{m}=\frac{\lambda{l}}{d}\).

З останнього виразу зрозуміло, що для покращення умов спостереження інтерференції необхідно збільшувати відстань від джерел до екрана l і зменшувати відстань між джерелами d.

Виконаємо обчислення:

\(\Delta{x}=\frac{6,2\cdot{10^{-7}}\cdot{0,5}}{0,4\cdot{10^{-3}}}=7,75\cdot{10}^{-4}\) м \(\approx{0,8}\) мм.

Задача 17.2

На тонку плівку з показником заломлення n = 1,33 падає паралельний пучок білого світла під кутом \(\alpha=30^{\circ}\).

Визначити

мінімальну товщину плівки d, при якій відбите світло з довжиною хвилі \(\lambda_{1}=0,64\) мкм максимально підсилене внаслідок інтерференції, а з довжиною хвилі \(\lambda_{2}=0,40\) мкм – зовсім не відбивається. Врахувати, що при відбиванні від оптично більш густого середовища фаза відбитої хвилі стрибком змінюється на \(\delta=\pi\).

Дано:

n = 1,33
\(\alpha=30^{\circ}\)
\(\lambda_{1}=0,64\) мкм
\(\lambda_{2}=0,40\) мкм
d - ?

Розв’язання

Світло, що падає на плівку, частково відбивається від її верхньої поверхні, частково входить у плівку, відбивається від її нижньої поверхні та виходить назовні. Хід одного з падаючих променів показаний на рис.2. Промені 1 та 2 є когерентними, оскільки утворені поділом одного падаючого променя. Якщо на шляху променів поставити лінзу, що збере їх в одну точку (такою лінзою може бути кришталик ока), то буде спостерігатись інтерференція. Як наслідок, інтенсивність відбитого світла в залежності від різниці фаз \(\delta\) може підсилюватися (при виконанні умови (17.7а)), або послаблятися (при виконанні умови (17.7б)).

Різниця фаз залежить від різниці ходу променів (формула (17.5)). Визначимо геометричні довжини шляху променів 1 та 2 від точки падіння А до точок D та С (подальші шляхи променів до екрана однакові, тому їх не треба враховувати). Шлях променя 1 l1 = AD. З трикутника ACD:

l1 = AC\(\cdot\sin\alpha\)=2AE\(cdot\sin\alpha\).

З трикутника ABE: AE = \(d\cdot\mathrm{tg}\beta\), отже \(l_{1}=2d\cdot\frac{\sin\alpha\cdot\sin\beta}{\sqrt{1-\sin^{2}\beta}}\)

Підставивши вираз \(\sin\beta=\sin\alpha/n\) з закону заломлення світла (16.6), дістанемо:

 

\(l_{1}=2d\frac{\sin^{2}\alpha}{n\sqrt{1-\sin^{2}\alpha/n}}=\frac{2d\sin^{2}\alpha}{\sqrt{n^{2}-sin^{2}\alpha}}\).

(1)

Аналогічно визначаємо шлях променя 2 (див. рис.2):

 

\(l_{2}=AB+BC=2AB=\frac{2d}{\cos\beta}=\frac{2d}{\sqrt{1-\sin^{2}\beta}}=\frac{2dn}{\sqrt{n^{2}-\sin^{2}\alpha}}\).

(2)

В однорідному середовищі різниця фаз пов’язана з шляхами променів співвідношенням (17.5). Але в даній задачі промені поширюються в різних середовищах: промінь 1 у повітрі (n = 1), а промінь 2 у плівці (n = 1,33). Тоді довжини хвиль цих променів різні: у променя 1 задане в умові значення \(\lambda_{0}\), а у променя 2  \(\lambda=\lambda_{0}/n\) (див. формулу (16.4)), і формула (17.5) набуває вигляду:

\(\delta=\frac{2\pi{l_{2}}}{\lambda}-\frac{2\pi{l_{1}}}{\lambda_{0}}\)    \(\Rightarrow\)   \(\delta=\frac{2\pi}{\lambda}(l_{2}n-l_{1})\).

Підставивши в це співвідношення вирази (2) і (1), після спрощення отримаємо:

 

\(\delta=\frac{2\pi}{\lambda_{0}}\cdot{2d}\sqrt{1-\sin^{2}\alpha}\).

(3)

Для визначення результату інтерференції цих променів слід урахувати вказаний в умові ефект зміни фази на \(\delta_{0}=\pi\) променя 1, який відбивається від плівки (оптично більш густої, ніж повітря). Промінь 2 в точці В відбивається від повітря, тому його фаза не змінюється. Тому повна різниця фаз променів 1 і 2 \(\delta_{n}=\delta-\delta_{0}=\delta-\pi\). З урахуванням виразу (3), маємо:

 

\(\delta=\frac{2\pi}{\lambda_{0}}\cdot\left(2d\sqrt{n^{2}-\sin^{2}\alpha}-\frac{\lambda_{0}}{2}\right)\).

(4)

Максимум інтерференції для довжини хвилі \)\lambda_{0}=\lambda_{1}\) спостерігається при виконанні умови (17.7a), тобто

 

\(\frac{2\pi}{\lambda_{0}}\left(2d\sqrt{n^{2}-\sin^{2}\alpha}-\frac{\lambda_{0}}{2}\right)=2m_{1}\pi\)     \(\Rightarrow\)

\(\Rightarrow\)     \(2d\sqrt{n^{2}-\sin^{2}\alpha}=(2m+1)\frac{\lambda_{0}}{2}\).

(5)

Мінімум інтерференції для довжини хвилі \(\lambda_{0}=\lambda\) спостерігається при виконанні умови (17.7б), тобто

 

\(\frac{2\pi}{\lambda_{0}}\left(2d\sqrt{n^{2}-\sin^{2}\alpha}-\frac{\lambda_{0}}{2}\right)=(2m_{2}+1)\pi\)   \(\Rightarrow\)

\(\Rightarrow\)   \(2d\sqrt{n^{2}-\sin^{2}\alpha}=(m_{2}+1)\lambda_{0}\).

(6)

Порядки інтерференції (числа m1, m2) у формулах (5) та (6) є незалежними і, звичайно, можуть бути різними.

Оскільки умови (5) і (6) повинні виконуватись одночасно, то, прирівнюючи праві частини, дістанемо

\((2m_{1}+1)\frac{\lambda_{1}}{2}=(m_{2}+1)\lambda_{2}\)    \(\Rightarrow\)    \(\frac{2m_{2}+2}{2m_{1}+1}=\frac{\lambda_{1}}{\lambda_{2}}\)

Мінімальній можливій товщині плівки відповідають мінімальні значення цілих чисел m2 та m1, що з урахуванням значень \(\lambda_{1}\) та \(\lambda_{2}\) дає

\(\frac{2m_{2}+2}{2m_{1}+1}=\frac{8}{5}\)     \(\Rightarrow\)    \(\frac{m_{2}+1}{2m_{1}+1}=\frac{4}{5}\).

Звідси: m2 + 1 = 4;  2m1 + 1 =5.

Підставивши будь-яке з цих чисел у відповідну формулу ((6) або (5)), отримаємо відповідь. Наприклад:

\(d=\frac{(2m+1)\lambda}{4\sqrt{n^{2}-sin^{2}\alpha}}=\frac{5\cdot{0,64}\cdot{10^{-6}}}{4\sqrt{1,33^{2}-\sin^{2}30^{\circ}}}=6,49\cdot{10}^{-7}\) м \(\approx\) 0,65 мкм.

 

*********************************

Задача 17.3

Скляний клин (показник заломлення n = 1,5) має кут при вершині \(\varphi=2^{\prime}\). На клин падає нормально монохроматичне світло з довжиною хвилі \(\lambda=600\) нм

Визначити

відстань x між сусідніми темними інтерференційними смугами, що спостерігаються у відбитих променях.

Дано:

n = 1,5
φ  = 2′
λ = 600 нм = 6·10-7 м
 
x - ?

Розв’язання

Промінь світла, який падає на клин, частково відбивається, а частково проходить у скло. Оскільки кут клина дуже малий, можна вважати, що кут заломлення практично дорівнює куту падіння, тобто \(\alpha=\beta=0\) Промінь, що зайшов у скло, відбивається від нижньої грані клина і після виходу зі скла інтерферує з променем, відбитим від верхньої грані. Умови утворення темних смуг (мінімумів інтерференції) цих променів такі ж, як у попередній задачі. Слід тільки врахувати, що в даній задачі \(\alpha=0\). Отже, згідно з виразом (6) з задачі 17.2 маємо таку умову мінімумів:

 

\(2dn=\lambda\),

(1)

де m – порядок (номер) мінімуму.

Припустимо, що в точці A (рис.3) спостерігається (m + 1)-й мінімум. Тоді, позначивши товщину клина в цій точці d1, можемо записати:

 

\(2d_{1}n=(m+1)\lambda\).

(2)

Аналогічно для точки B де спостерігається наступний інтерференційний мінімум порядку m +2 і товщина клина дорівнює d2:

 

\(2d_{2}n=(m+2)\lambda\).

(3)

Віднявши ліві та праві частини виразів (3) та (2), дістанемо:

\(2(d_{2}-d_{1})n=\lambda\)      \(\Rightarrow\)      \(d_{2}-d_{1}=\frac{\lambda}{2n}\).

Різниця d2d1 = s дуже мала. Тому з трикутника ABC, враховуючи малість кута \(\varphi\) (звичайно, вираженого в радіанах), маємо

\(\frac{S}{\varphi}=\frac{\lambda}{2n\varphi}=\frac{6\cdot{10^{-7}}}{2\cdot{1,5}\cdot{5,82}\cdot{10}^{-4}}=0,00034\) м = 0,34 мм.