ФІЗИКА ДЛЯ БАКАЛАВРІВ. ЕЛЕМЕНТИ ОПТИКИ

Лекція 5.1. ВІДБИВАННЯ ТА ЗАЛОМЛЕННЯ СВІТЛА

2. СВІТЛОВІ ХВИЛІ НА МЕЖІ ПОДІЛУ СЕРЕДОВИЩ. ВІДБИВАННЯ ТА ЗАЛОМЛЕННЯ

Визначальною властивістю хвиль є відбивання та заломлення – здатність ділитися на дві хвилі на межі двох різних середовищ. Одна з хвиль (відбита) не проходить, а інша (заломлена) проходить крізь межу поділу. Напрямки поширення відбитої та заломленої хвиль визначаються простими геометричним законами, що не залежать від фізичної природи хвилі. Оптиці ці закони складають основу геометричної оптики, в якій поширення світла досліджується на основі уявлення про падаючі, відбиті та заломлені промені – лінії, що вказують напрям поширення відповідних хвиль в кожній точці простору і спрямовані по нормалі до відповідної хвильової поверхні.

Напрямок падаючого, відбитого чи заломленого променя задається кутом між ним та нормаллю до межі поділу середовищ у точці падіння. Площина, в якій лежать указана нормаль і падаючий промінь називають площиною падіння. В ізотропних середовищах відбитий та заломлений промені лежать у тій самій площині, що випливає з міркувань симетрії. Таким чином,

в ізотропних середовищах падаючий, відбитий та заломлений промені лежать в одній площині – площині падіння.

Це твердження складає одне з основних положень геометричної оптики.

 

Закони відбивання і заломлення. Ці закони є основними законами геометричної оптики. Їх можна вивести із загальних законів електромагнітної теорії Максвелла. Але до них можна прийти простіше на основі відомого емпіричного принципу Гюйгенса, який спрощено можна сформулювати так:

точки, до яких на дану мить дійшла хвиля (точки фронту хвилі), можна вважати джерелами сферичних вторинних хвиль; положення фронту хвилі, що розглядається, в наступний момент часу визначається обвідною елементарних хвильових поверхонь всіх вторинних хвиль у цей момент.

У такий спосіб за відомими положенням фронту хвилі в даний момент часу можна побудувати його положення в наступні моменти і, відтак, прослідкувати поширення даної хвилі. Зокрема, так можна показати відомий факт прямолінійного поширення світла в однорідному середовищі, який трактується як один з основних законів геометричної оптики. Але слід зауважити, що принцип Гюйгенса не має строго фізичного обґрунтування і є лише емпіричним правилом побудови хвильових фронтів.

Виконаємо побудову Гюйгенса для світлових хвиль на плоскій межі поділу двох середовищ з показниками заломлення n1 і \n_2\)і відповідним швидкостям поширення v1 і v2. Нехай на межу поділу під кутом ϑ1 падає паралельний світловий пучок (плоска хвиля), обмежений променями 1 і 2 (рис. 1.2).

Позначимо кутами ϑ і ϑ напрямки відбитих та заломлених променів і відрізком AC – положення фронту падаючої хвилі на момент приходу променя 1 в точку А. Промінь 2 потрапляє в точку В пізніше на час проходження ним відстані ВС. Таку саме відстань AD = BC за цей час проходить відбитий промінь 1. Тому фронт відбитої в точці А вторинної хвилі на цей момент зобразиться півсферою з радіусом AD, а дотична до неї площина показана відрізком BD укаже положення результуючого фронту хвилі. Примітка. Ця площина є дотичною й до безлічі подібних сфер меншого радіуса, що зображують хвильові поверхні вторинних хвиль відбитих від інших точок ділянки А-В межі поділу середовищ, на яку падає світловий пучок. Тож відрізок ADBD визначає напрям відбитого променя 1. Оскільки AD = BC, то DABC = DABD. Звідси, як можна зрозуміти з рис. 1.2, випливає закон відбивання світла:

 

ϑ=ϑ.

(1.13)

A саме:

 

кут відбивання дорівнює кутові падіння.

 

 Аналогічною побудовою можна встановити і напрям поширення заломленої хвилі. Падаючий промінь 2 потрапляє на поверхню поділу середовищ пізніше, ніж промінь 1 на час τ=BC/v1. За цей час вторинна хвиля від точки А пошириться в другому середовищі на відстань AF так, що

 

AF=v2τ=BCv2v1          BCAF=v1v2.

(1.14)

Площина (показані відрізком BF), що проходить через точку В і є дотичною до сфери радіуса AF, визначає фронт заломленої хвилі, а перпендикуляр AF до нього – напрям заломлених променів. Урахувавши, що в прямокутних трикутниках DABC і DABF катети BC = ABsinϑ1 і AF = ABsinϑ2 і що v=c/n, із співвідношення (1.14) отримаємо закон заломлення:

 

sinϑ1sinϑ2=n2n1     або    n1sinϑ1=n2sinϑ2

(1.15)

 

 

при переході променя через межу поділу двох середовищ відношення синусів кутів падіння та заломлення дорівнює оберненому відношенню показників заломлення цих середовищ.

 

Отже, як саме явище заломлення, так і зв'язок між напрямками поширення світлових хвиль у двох середовищах зумовлені відмінністю оптичних густин, тобто швидкостей світла в даних середовищах.

 

Граничний кут. Із співвідношень (1.15) випливає, що коли ϑ1=0, то й ϑ2=0, тобто при нормальному падінні променя на межу поділу ізотропних середовищ заломлення в буквальному розумінні немає. Істотно також, що при косому падінні напрям відхилення заломленого променя залежить від співвідношення показників заломлення середовищ.

Коли світло переходить в оптично більш густу речовину (n1 > n2), то згідно з (1.19) ϑ1<ϑ2 і заломлений промінь відхиляється до нормалі (рис. 1.3а). Якщо ж світло падає на межу поділу із більш густого середовища (n1 > n2), то ϑ2>ϑ1 і заломлений промінь відхиляється до поверхні поділу середовищ (рис. 1.3.б). У цьому випадку при певні величині кута падіння ϑ1=ϑгр кут заломлення набуває максимального можливого значення ϑ2=90. Величина ϑгр називається граничним кутом (інакше – критичним кутом) для пари середовищ і визначається з (1.15) як

 

sinϑгр=n2n1           ϑгр=arcsin(n2n1),   (n1 > n2).

(1.16)

Як свідчить теорія та експеримент, при збільшенні кута падіння, за будь-яких умов, інтенсивність відбитого променя весь час збільшується, а заломленого – зменшується. При чому, у впадку n1>n2, коли кут падіння наближається до значення ϑ1=ϑгр, інтенсивність заломленого променя зменшується до нуля. Тому при кутах падіння ϑϑгр енергія падаючого променя повністю відбивається від межі поділу двох прозорих речовин як від ідеального дзеркала. Це явще носить назву повного внутрішнього відбивання. Воно спостерігається у природі і широко використовується в техніці. Достатньо згадати сліпучий виблиск крапель роси на сонці або широке застосування оптичних кабелів у системах телекомунікації.

Нагадаємо ще раз, що повне внутрішнє відбивання при падінні світла із середовища з показником заломлення n1 намежу поділу із середовищем n2 спостерігається при одночасному виконанні двох умов:

 

n1>n2   і   ϑ1ϑгр.

(1.17)