ФІЗИКА. Вчимося розв'язувати задачі. "МЕХАНІКА". Компенсаційний курс

2. Приклади розв'язування задач

2.2. Прямолінійний рівнозмінний рух одного тіла

Задача 1.9. Літак рухається прямолінійно спочатку зі швидкістю \(v_{0}\) = 720 км/год, а потім протягом t = 10 с рівно-прискорено так, що за останню секунду (проміжок часу \( \tau \) ) долає відстань S = 295 м. Визначити кінцеву швидкість літака \( {v}\).

Задача 1.10. Потяг, який рухається прямолінійно рівно-прискорено, на певній ділянці шляху збільшує швидкість на \( \Delta{v} \) = 60 км/год при середній швидкості \( \langle{v}\rangle \) = 40    км/год. Визначити швидкість поїзда \( {v}\) посередині згаданої ділянки.

Задача 1.11. Тіло вільно падає з висоти h = 25 м. Визначити його середню швидкість \( \langle{v}\rangle \) на другій половині шляху.

Задача 1.12. По похилій дошці знизу вгору пустили кульку. На відстані S = 30 см від початкової точки кулька побувала двічі: через t1 = 1 c та t2 = 2 c . Визначити мінімально можливу довжину дошки L. Тертя відсутнє.

Задача 1.13. Тіло кинули зі швидкістю \( {v}_{0}\) = 15 м/с вертикально вгору з балкона, розташованого на висоті h = 25 м.  Визначити: а) максимальну висоту підйому H тіла над землею; б) час \( \tau \), через який воно впаде на землю; в) швидкість \( {v}\) тіла на момент падіння.

Задача 1.14.  Кабіна ліфта висотою h = 2,25 м починає підійматись із прискоренням a = 0,5 м/с2. На момент, коли її швидкість досягла значення \( {v}_{0}=2,5 \) м/с, зі стелі відірвалася пластилінова кулька. Визначити: а) час \( \tau \) падіння кульки на підлогу, б) величину (модуль) переміщення \( {l}\) та  в) шлях S, який пройшла кулька відносно шахти ліфта.

Задача 1.9

Літак рухається прямолінійно спочатку зі швидкістю \(v_{0}\) = 720 км/год, а потім протягом t = 10 с рівно-прискорено так, що за останню секунду (проміжок часу τ = 1 c) долає відстань  S = 295 м.

Визначити

кінцеву швидкість літака \( {v}\).

Розв'язання

Дано:

v0 = 720 км/год=
=200 м/с
t = 10 c
τ = 1 c
S = 295 м

\( {v}\) - ?

Літак починає прискорюватися при заданій швидкості v0, тож шукана кінцева швидкість визначається рівнянням

\( {v}=v_{0}+at \).

(1)

Потрібне для отримання відповіді прискорення а можна знайти через заданий шлях  S. Для цього в напрямку руху літака спрямуємо вісь OX  із початком відліку в точці початку розгону, рис. 9. Тоді рівняння кінцевої координати літака має вигляд:

\( {x}=v_{0}t+\frac{at^{2}}{2}\).

(2)

Із цього ж рівняння, замінивши t на t1 = t – τ, отримаємо вираз координати на передостанню секунду:

\( {x}_{1}\) = \( v_{0}(t-\tau)+\frac{a(t-\tau)^{2}}{2}\).

Отже, літака за останню секунду S = xx1 визначається, як

\( {S}=x-x_{1}\) = ${{v}_{0}}\tau +\frac{a\tau \left(2t-\tau \right)}{2}$,

Відтак після простих перетворень знайдемо прискорення

\( {a}=\frac{2(S-v_{0}\tau)}{{\tau}(2t-\tau)} \) = 10 м/с2

і за формулою (1)  – кінцеву швидкість літака:

\( {v}\) = 300 м/с.

Задача 1.10

Потяг, який рухається прямолінійно рівно-прискорено, на певній ділянці шляху збільшує швидкість на \( \Delta{v} \) = 60 км/год при середній швидкості \( \langle{v}\rangle \) = 40 км/год..

Визначити

швидкість поїзда \( {v}\) посередині згаданої ділянки.

 

Дано:

\( \langle{v}\rangle \) = 40 км/год
\( \Delta{v}\) = 60 км/год

\( {v} \) - ?

 Розв'язання

В умові немає інформації про час руху потяга на згадуваній ділянці шляху. Тому пошук відповіді почнемо з формули (1.19), яка встановлює зв'язок між шляхом і швидкістю.  Отже, увівши для  початкової, кінцевої і шуканої швидкостей, а також прискорення і пройденого шляху відповідні позначення v1, v2, v, а, S, запишемо:

\({{v}^{2}}-v_{1}^{2}=aS\),

\({v_{2}^{2}-{v}^{2}}=aS\),

і, прирівнявши ліві частини,  отримаємо:

\({{v}^{2}}=\frac{v_{1}^{2}+v_{2}^{2}}{2}\)    \(\Rightarrow \)   v = \(\sqrt{{\left( v_{1}^{2}+v_{2}^{2} \right)}/{2}}\) (1)

Швидкості v1 і  v2 можна виразити через задані величини \( \langle{v}\rangle \) і \( \Delta{v} \) за допомогою рівняння (1.16):

\(S={{v}_{1}}t+\frac{a{{t}^{2}}}{2}=\left( {{v}_{1}}+\frac{at}{2} \right)t\).

Звідси, зробивши очевидні заміни S =  \( \langle{v}\rangle\)t,  a = v/t) і v2 = v1 + Δv, дістанемо:

\({{v}_{1}}=\left\langle v \right\rangle -\frac{\Delta v}{2}\quad \ ,   \quad {{v}_{2}}=\left\langle v \right\rangle+\frac{\Delta v}{2}\)

Відтак, підставивши отримані вирази у формулу (1), після спрощень отримуємо відповідь:

\( {v}=\sqrt{\langle{v}\rangle^{2}+\left(\frac{\Delta{v}}{2}\right)^{2}}\)  = 50 км/год.

Задача 1.11

Тіло вільно падає з висоти h = 25 м.

Визначити

його середню швидкість \( \langle{v}\rangle \) на другій половині шляху.

 

Дано:

h = 25,0 м

\( \langle{v}\rangle \)-? 

Розв'язання

Розв'яжемо задачу двома способами.

Спосіб 1. Середня швидкість тіла кульки дорівнює відношенню пройденого шляху (h/2) до часу його проходження Δt:

$\left\langle v \right\rangle =\frac{h}{2\Delta t}$,

Величина \( \Delta{t}=t_{2}-t_{1}\), де час проходження тілом верхньої половини шляху t1 і повний час руху t2 визначаються з рівняння (1.16):

\( \frac{h}{2}=\frac{gt_{1}^{2}}{2}\);          \( \Rightarrow \)           \( {t}_{1}=\sqrt{\frac{h}{g}}\);

\( {h}=\frac{gt_{2}^{2}}{2}\);        \( \Rightarrow \)         \( {t}_{2}=\sqrt{\frac{2h}{g}}\).

Отже,

\( \Delta{t}=t_{2}-t_{1}=\sqrt{\frac{h}{g}}\left(\sqrt{2}-1\right) \).

Відтак для шуканої і середньої  швидкості виходить:

$\left\langle v \right\rangle =\frac{\sqrt{gh}}{2\left( \sqrt{2}-1 \right)}$

Помноживши цей вираз у чисельнику й знаменнику на $\left( \sqrt{2}+1 \right)$, відповідь можна подати також у наступному вигляді:

$\left\langle v \right\rangle =\frac{\sqrt{gh}}{2}\left( \sqrt{2}+1 \right)$.

Обчислення дають

\(\left\langle v \right\rangle \) = 19 м/с

Спосіб 2. Відповідь можна отримати відразу за формулою (1.21) через швидкості тіла в кінці першої половини v1 та всього шляху v2, котрі за формулою (1.19а) дорівнюють

\({{v}_{1}}=\sqrt{gh}\)      і      \({{v}_{2}}=\sqrt{2gh}\)

Отже,

\(\left\langle v \right\rangle =\frac{\sqrt{gh}}{2}\left( \sqrt{2}+1 \right) \).

Задача 1.12

Кулька, пущена вгору по похилій дошці, на відстані S = 30 см від початкового положення побувала двічі: через t1 = 1 c та t2 = 2 c .

Визначити

мінімально можливу довжину дошки L. Тертя відсутнє.

 

Дано:

S = 30 см
t1 = 1 c
t2 = 2 c

L - ?

 

Розв'язання

Кулька  рухається вздовж дошки з наданою їй початковою швидкістю v0 і прискоренням a, що створюється "скочувальною" складовою сили тяжіння Спочатку вона  опиняється на відстані S в момент t1, підіймаючись угору, а потім у момент t2 знов опиняється в тому самому положенні, скочуючись. Отже, найменша необхідна довжина дошки дорівнює максимальній відстані L, на яку може віддалитися  кулька від початкового положення.

Для визначення величини L спрямуємо вісь OX уздовж дошки, розмістивши початок координат в початковому положенні кульки (х0 = 0). У такому разі проєкція прискорення ах = – а, і, згідно з рівнянням (1.18),

 

\(x=\frac{v_{0}^{2}-{{v}^{2}}}{2a}\).

При максимальному віддаленні х = L  швидкість кульки v = 0, отже,

\( {L}=\frac{v_{0}^{2}}{2a}\). (1)

Величини v0 і a можна знайти з рівняння координати кульки (1.16).  Поклавши x = S , отримаємо:

\( {S}=v_{0}t-\frac{at^{2}}{2}\) \(\Rightarrow \)  

\(a{{t}^{2}}-2{{v}_{0}}t+2S=0\),

Коренями цього рівняння є задані моменти часу t1 і t2, тож за теоремою Вієта

${{t}_{1}}+{{t}_{2}}=\frac{2{{v}_{0}}}{a}$   i   ${{t}_{1}}{{t}_{2}}=\frac{S}{2a}$,

і

\( {a}=\frac{2S}{t_{1}t_{2}}\),    \( {v}_{0}=\frac{a(t_{1}+t_{2})}{2}=\frac{S(t_{1}+t_{2})}{t_{1}t_{2}}\).

Підставивши отримані величини у вираз (1), дістанемо відповідь:

\( {L}=\frac{S(t_{1}+t_{2})^{2}}{4t_{1}t_{2}}\)  ≈ 34 см.

 

Задача 1.13

Тіло кинули зі швидкістю \( {v}_{0}\) = 15 м/с вертикально вгору з балкона, розташованого на висоті h = 25 м. 

Визначити:

а) максимальну висоту підйому H тіла над землею;

б) час \( \tau \), через який воно впаде на землю;

в) швидкість \( {v}\) тіла на момент падіння.

 

Дано:

h = 25 м
v0 = 15 м/с
H - ?
τ - ?
v - ?

Розв'язання

Напрямимо вгору вісь OY з початком відліку на землі (рис. 13). У такому разі початкова координата тіла y0 = h, проєкції швидкості та прискорення \(v_{0y}=v_{0}\) і \(g_{y}=-g\), і, згідно з (1.16), поточні координата та проєкція швидкості задовольняють рівняння:

\(y=h+v_{0}t-\frac{gt^{2}}{2}\), (1)
vy = v0 – gt. (2)

а) У найвищій точці підйому швидкість тіла дорівнює нулю, тож час підйому:

\(t=\frac{v_{0}}{g}\).

Максимальна висота підйому дорівнює координаті тіла в цей момент:

\(H=h+v_{0}t-\frac{gt^{2}}{2}=h+\frac{v_{0}^{2}}{2g}\approx\) 36,5 м.

б) На момент падіння на землю t =\(\tau\) координата тіла y = 0:

\(y(\tau)=h+v_{0}\tau-\frac{g\tau^{2}}{2}=\) 0.

Розв'язавши це квадратне рівняння, знайдемо:

\(\tau=\frac{v_{0}+\sqrt{v_{0}^{2}+2gh}}{g}=\) 4,26 c.

(від'ємний корінь не має фізичного змісту).

в) Підставивши знайдене значення \(\tau\) в рівняння (2), дістанемо

vy = v0 – gτ= –26,75 м/с.

Знак "–" означає, що вектор швидкості в момент падіння тіла на землю напрямлений проти осі OY, тобто вертикально вниз.

Задача 1.14

Кабіна ліфта висотою h = 2,25 м починає підійматися з прискоренням a = 0,5 м/с2. У момент, коли її швидкість досягла значення v0 = 2,5 м/с, зі стелі відірвалася пластилінова кулька.

Визначити:

а) час \( \tau \) руху кульки до підлоги;

б) переміщення \( {l}\)  та

в) шлях S, який пройшла кулька відносно шахти.

Дано:

h = 2,25 м
a = 0,5 м/с2
v0 = 2,5 м/с

τ - ? l - ?  S - ?

Розв'язання

Рух кульки, залежно від ситуації, зручно розглядати або відносно кабіни ліфта (система відліку O′Y′, рис. 1.14а), або відносно шахти  (система відліку OY, рис. 1.14б).

kz-14а) Для визначення часу падіння кульки є доцільно розглянути її рух відносно кабіни ліфта (рухомої системи відліку О′Y′  рис. 14а).

Відносно землі ліфт рухається з прискоренням \( \vec{a}\) а кулька  з прискоренням \( \vec{g}\). Тож відносно ліфта її прискорення \( \vec{a}^{\prime}=\vec{g}-\vec{a}\) має модуль

a′ = (a + g).

При цьому початкова швидкість кульки відносно ліфта ${{{v}'}_{0}}=0$ і початкова координата ${{{y}'}_{0}}=h$. Отже за рівнянням (1.16) її координата в довільний момент часу

\( {y}^{\prime}=h-\frac{(g+a)t^{2}}{2}\).

Тож на момент падіння t = \( \tau \), коли \( {y}^{\prime}\) = 0, маємо:

\( h-\frac{(g+a)t^{2}}{2}={0}\)    \( \Rightarrow \)     \( \tau=\sqrt{\frac{2h}{g+a}}\) = 0,65 c.

б) Величина переміщення l кульки в нерухомій системі відліку OY , що є пов'язана із шахтою ліфта (тобто землею), дорівнює  відстані (модулю різниці координат) між точками падіння на підлогу та відриву кульки від стелі ліфта:

$l=\left| y(\tau )-h \right|$.

Прискорення кульки відносно шахти  дорівнює g, отже,

\( {y}(\tau)=h+v_{0}\tau-\frac{g{\tau}^{2}}{2}\).

Відповідно, переміщення

\( {l}=\left|v_{0}\tau-\frac{g\tau^{2}}{2}\right|={0,5}\) м. (1)

в) На рис. 1.14б умовно показано положення кабіни ліфта відносно шахти (в системі відліку OY) на момент падіння кульки на підлогу та її початкове (y0 = h) і найвище (ym) положення. З рисунка видно, що шлях S кульки  складається з двох частин –  шляху підйому до найвищої точки траєкторії S1 і шляху S2 падіння на підлогу ліфта, причому \( {S}_{2}=S_{1}+{l}\). Отже,

\( {S}=S_{1}+S_{2}=2S_{1}+{l}\)

Позаяк у найвищій точці підйому швидкість кульки v = 0, то згідно з формулою (1.19),

\( {S}_{1}=\frac{v_{0}^{2}}{2g}\) = 0,3 м,

і згідно з результатом (1) шуканий шлях кульки від точки відриву до підлоги ліфта складає

S = 1,1 м.