Печатать эту главуПечатать эту главу

ФІЗИКА. Вчимося розв'язувати задачі. "МЕХАНІКА". Компенсаційний курс

2. Приклади розв'язування задач

2.5. Рух двох тіл

Задача 1.23. Двоє байкерів рухаються однією прямою дорогою відповідно до рівнянь: \( {x}_{1}={8t} \) і \( {x}_{2}=14+0,5t^{2}\). 1. Проаналізувати рух і показати графіки координат байкерів x(t). 2Визначити: а) час t та місце зустрічі байкерів (відстань L від початку координат);  б) час τ, за який байкери подолають однаковий шлях і знайти його величину S.

Задача 1.24. Два тіла з однакової висоті над землею кинуто горизонтально у протилежних напрямах зі швидкостями \( {v}_{01}={4} \) м/с і \( {v}_{02}={9}\) м/с. Визначити, через який час t вектори швидкостей тіл стануть взаємно перпендикулярними.

Задача 1.25. З однієї точки одночасно і з однаковою швидкістю \( {v}\) = 20 м/с кидають вгору два тіла: одне вертикально, а інше – під кутом \( \alpha=50^{\circ}\) до горизонту. Визначити відстань L між тілами через час t = 0,5 c після початку руху.

Задача 1.22
Задача 1.23

Двоє байкерів рухаються однією прямою дорогою відповідно до рівнянь: \( {x}_{1}={8t} \) і \( {x}_{2}=14+0,5t^{2}\)

1. Проаналізувати рух і показати графіки координат байкерів x(t).

2. Визначити:

а) час t та місце зустрічі байкерів (відстань L від початку координат); 

б) час τ, за який байкери подолають однаковий шлях і знайти його величину S.

Дано:

 x1 = 8t
 x2 = 14 + 0,5t2

t - ? L - ? τ - ?

 

Розв'язання

1. З умови випливає, що перший байкер рухається із сталою швидкістю v1 = 8 м/с і при t = 0 знаходиться в початку координат. Одночасно другий байкер, перебуваючи попереду на відстані  x20 = 14 м, починає рухатись  у тому самому напрямі з прискоренням a2 = 1 м/с2.

Для аналізу подальшого руху байкерів випишемо у загальному вигляді рівняння їхніх координат (1.16):

$\begin{align}  & {{x}_{1}}={{v}_{1}}t \\ & {{x}_{2}}={{x}_{20}}+\frac{{{a}_{2}}{{t}^{2}}}{2} \\\end{align}$

Відтак, наклавши умову x2x1, отримаємо рівняння, що визначає можливі моменти зустрічі байкерів:

${{x}_{20}}+\frac{{{a}_{2}}{{t}^{2}}}{2}$ =${{v}_{1}}t$   $\Rightarrow $  ${{a}_{2}}{{t}^{2}}-2{{v}_{1}}t+2{{x}_{20}}=0$  (1)

Із виразу коренів цього рівняння

$ t=\frac{{{v}_{1}}\pm \sqrt{v_{1}^{2}-2{{a}_{2}}{{x}_{20}}}}{{{a}_{2}}}$

випливає, що на загал є три можливості:

1) $v_{1}^{2}<2{{a}_{2}}{{x}_{20}}$ корені не існують, тобто байкери взагалі не зустрінуться;

2) $v_{1}^{2}=2{{a}_{2}}{{x}_{20}}$ – байкери зустрінуться в момент t0 = v1/a2;

3) $v_{1}^{2}>2{{a}_{2}}{{x}_{20}}$ – відбудеться дві зустрічі.

Рис. 1.23
Рис. 1.23

Сказане ілюструє рис. 23, на якому зображено графік  x2(t), що являє гілку параболи з вершиною на осі ординат і три промені – графіки x1(t) для випадків 1), 2) і 3), починаючи з нижнього.

Проаналізуємо  за графіками рух байкерів у кожному з наведених випадків, узявши до уваги, що відстань між байкерами визначається різницею ординат х, а швидкість руху – нахилом графіків до осі абсцис t (див. п. 1.4). Тож, як видно, в кожному випадку перший байкер спочатку наздоганяє другого, а від моменту, коли їхні швидкості порівнюються, – відстає. При цьому:

–  за малої швидкості v1 (випадок 1) перший байкер починає відставати, ще не діставшись точки старту другого, тож ніколи його не наздожене;

–  у випадку 2 перший байкер у момент t0 і в точці х0 наздоганяє другого, але відразу починає відставати;

–  при великій швидкості (випадок 3) перший байкер у момент t1 (перша зустріч) має більшу швидкість і починає випереджати другого. Але потім другий, поступово нарощуючи швидкість, у момент t2 (друга зустріч) наздоганяє й уже назавжди випереджає першого. 

2а. При заданих значеннях  v1 = 8 м/с,  x20 = 14 м і a2 = 1 м/с2 виконується умова 3), і корені рівняння (1) становлять t1 = 2 c, t2 = 14 c. Отже, байкери зустрічаються  двічі – через 2 с та 14 с після старту другого і, згідно із заданими в умові рівняннями, на відстані L1 = 16 м і  L2 = 112 м від початку координат.  

2б. Пройдений кожним байкером шлях дорівнює зміні його координати. Тож, поклавши в заданих умовою задачі рівняннях  х1 = х2 = S і t = τ , отримаємо:

$\left\{ \begin{align}  & S=8\tau  \\ & S=0,5{{\tau }^{2}} \\\end{align} \right.\quad \Rightarrow \quad \tau =16\text{ c;}\quad S=128\text{ }\text{м.}$

Задача 1.23
Задача 1.24

Два тіла з однакової висоті над землею кинуто горизонтально у протилежних напрямах зі швидкостями \( {v}_{01}={4} \) м/с і \( {v}_{02}={9}\) м/с. 

Визначити,

через який час t вектори швидкостей тіл стануть взаємно перпендикулярними.

Дано:

v01 = 4 м/c
v02 = 9 м/c
g = 10 м/с2

t - ?

Розв'язання

Умова задачі містить інформацію про початкові та кінцеві швидкості двох тіл, які одночасно починають рух із однаковим прискоренням \( \vec{g}\). Тож шуканий час  можна знайти за допомогою рівнянь  (1.14):

\( \vec{v}_{1}(t)=\vec{v}_{01}+\vec{g}{t}\),

 \( \vec{v}_{2}(t)=\vec{v}_{02}+\vec{g}{t}\)

одним із двох способів.

І спосіб. Згадаємо, що скалярний добуток векторів \( \vec{b}\) і \( \vec{c}\) визначається як \( \vec{b}\cdot\vec{c}=b{c}\cos\alpha \), де \( \alpha \) – кут між векторами. Для взаємно перпендикулярних векторів  він дорівнює нулю, отже:

\( \vec{v}_{1}(t)\vec{v}_{2}(t)=\left(\vec{v}_{01}+\vec{g}t\right)\left(\vec{v}_{02}+\vec{g}t\right){=}\)

\( {=}\vec{v}_{01}\vec{v}_{02}+\vec{v}_{01}\vec{g}t+\vec{v}_{02}\vec{g}t+\vec{g}t\vec{g}{t}={0}\).

За умовою задачі кут між векторами \( \vec{v}_{01}\) та \( \vec{v}_{02}\) дорівнює \( {\pi}\). Отже,

\( \vec{v}_{01}\vec{v}_{02}=-v_{01}{v}_{02}\).

При цьому кути між векторами \( \vec{v}_{01}\) і \( \vec{g}\) та  \( \vec{v}_{02}\) і \( \vec{g}\) дорівнюють \( \pi{/2}\), тому\( \vec{v}_{01}\vec{g}=\vec{v}_{02}\vec{g}={0}\).

Крім того, скалярний добуток вектора самого на себе дорівнює квадрату його модуля: \( \vec{g}\cdot\vec{g}=g^{2}\). Таким чином,

\( \vec{v}_{1}\vec{v}_{2}=-v_{01}{v}_{02}+g^{2}t^{2}={0}\),

і

\( {t}=\frac{\sqrt{v_{01}v_{02}}}{g}={0,6}\) c.

ІІ спосіб. Оскільки вектори \( \vec{v}_{01},\,\vec{v}_{02}\) (див. рис. 23) є перпендикулярні до вектора \( \vec{g}\), то для швидкостей тіл у будь-який момент часу (див. рис. 23) можна записати:

\( {v}_{1}^{2}=v_{01}^{2}+(gt)^{2}\),       \( {v}_{2}^{2}=v_{02}^{2}+(gt)^{2}\). (1)

З іншого боку, позаяк за умовою вектори \( \vec{v}_{1}\) і \( \vec{v}_{2} \) (рис. 23б) є взаємно перпендикулярні, то

\( {v}_{1}^{2}+v_{2}^{2}=(v_{01}+v_{02})^{2}\).

Підставивши сюди вирази (1), дістанемо:

\( {v}_{01}^{2}+2(gt)^{2}+v_{02}^{2}=v_{01}^{2}+2v_{01}v_{01}+v_{02}^{2}\)       \( \Rightarrow \)     

\( {gt}=\sqrt{v_{01}v_{02}}\)       \( \Rightarrow \)       \( {t}=\frac{\sqrt{v_{01}v_{02}}}{g}={0,6}\) c.

Задача 1.24
Задача 1.25

З однієї точки одночасно і з однаковою швидкістю \( {v}\) = 20 м/с кидають вгору два тіла: одне вертикально, а інше – під кутом \( \alpha=50^{\circ}\) до горизонту. 

Визначити

відстань L між тілами через час t = 0,5 c після початку руху.

Дано:

v = 20 м/с
α  = 50°
t = 0,5 с

L - ?

Розв'язання

Залежно від вибору системи відліку, задачу можна розв'язати двома способами.

І спосіб. Оберемо координатну систему XOY з початком у точці кидання (рис. 24), в якій початкові координати обох тіл дорівнюють нулю, а проєкції початкових швидкостей \( {v}_{1x}={0}\), \( {v}_{1y}={v}\) і  \( {v}_{2x}=v\cos\alpha\)\( {v}_{2y}=v\sin\alpha \). Координати тіл на момент часу t визначаються рівняннями (1.16а):

\( {x}_{1}={0}\),                  \( {x}_{2}=vt\cos\alpha \);

\( {y}_{1}=vt-\frac{gt^{2}}{2}\),      \( {y}_{2}=vt\sin\alpha-\frac{gt^{2}}{2}\).

(1)

Відстань між двома точками через їхні координати виражається формулою:

\( {L}=\sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}\).

Тож, підставивши сюди вирази (1) для координат, після простих перетворень отримаємо:

$L=vt\sqrt{{{\cos }^{2}}\alpha +{{\left( \sin \alpha -1 \right)}^{2}}}=vt\sqrt{2\left( 1-\sin \alpha  \right)}$

Обчислення дають

L = 6,84 м.

ІІ спосіб. Пов'яжемо з першим тілом рухому систему відліку, швидкість V якої відносно нерухомої (земна поверхня) складає \( \vec{V}\) = \( \vec{v}_{1}\).  Тоді швидкість другого тіла відносно першого (швидкість в  рухомій системі відліку) визначається  формулою (1.11а):

\( \vec{u}=\vec{v}_{2}-\vec{v}_{1}=(\vec{v}_{02}+\vec{g}t)-(\vec{v}_{01}+\vec{g}t)=\vec{v}_{02}-\vec{v}_{01}=\mathrm{const}\).

  

 

Отже, позаяк прискорення тіл однакові, їхній відносний рух є рівномірним прямолінійним, і відстань між ними змінюється з часом, як

\( {L}=ut=\left|\vec{v}_{02}-\vec{v}_{01}\right|{t}\).

 Величину $u=\left| {{{\vec{v}}}_{02}}-{{{\vec{v}}}_{01}} \right|$ знайдемо за теоремою косинусів (див. рис. 24):

\( {u}=\sqrt{v^{2}+v^{2}-2vv\cos^{2}\beta}\)v\(\sqrt{2\left( 1-\cos \beta  \right)}\) = \( {L}=vt\sqrt{2(1-\sin\alpha)}\).