Печатать эту главуПечатать эту главу

ФІЗИКА. Вчимося розв'язувати задачі. "ОПТИКА". Компенсаційний курс

Приклади розв'язування задач

Дифракція світла

Задача 17.4. При опроміненні дифракційної гратки білим світлом спектри другого та третього порядків частково перекриваються. Визначити довжину хвилі \(\lambda_{2}\) у спектрі другого порядку (m2 = 2), на яку накладається фіолетова (\(\lambda_{3}=400\) нм) межа спектра третього порядку (m3 = 3).

Задача 17.5. При опроміненні дифракційної гратки білим світлом спектри другого та третього порядків частково перекриваються. Визначити довжину хвилі \(\lambda_{2}\) у спектрі другого порядку (m2 = 2), на яку накладається фіолетова (\(\lambda_{3}=400\) нм) межа спектра третього порядку (m3 = 3).

 

Задача 17.4

При опроміненні дифракційної гратки білим світлом спектри другого та третього порядків частково перекриваються.

Визначити

довжину хвилі \(\lambda_{2}\) у спектрі другого порядку (m2 = 2), на яку накладається фіолетова (\(\lambda_{3}=400\) нм) межа спектра третього порядку (m3 = 3).

Дано:

m2 = 2
m3 = 3
λ3 = 400 нм
λ3 - ?

Розв’язання

З умови задачі зрозуміло, що кути дифракції \(\varphi\) для хвиль \(\lambda_{2}\) та \(\lambda_{3}\) однакові. Тому, згідно з умовою (17.9), маємо:

\(d\sin\varphi=m_{2}\lambda_{2}\);   \(d\sin\varphi=m_{3}\lambda_{3}\)

Прирівнюючи праві частини цих виразів, одержимо

\(m_{2}\lambda_{2}= m_{3}\lambda_{3}\)    \(\Rightarrow\)    \(\lambda_{2}=\frac{m_{3}}{m_{2}}\lambda_{3}=\frac{3}{2}\cdot{400}=600\) нм.

 

Задача 17.5

Монохроматичне світло нормально падає на дифракційну гратку, яка має 45 штрихів на кожний міліметр довжини. Кут між напрямками на максимуми другого (m1 = 2) та третього (m2 = 3) порядків \(\Theta=1,6^{\circ}\).

Визначити

довжину хвилі світла \(\lambda\).

Дано:

N = 45 1/мм 
m1 = 2
m2 = 3
Θ = 1,6°
λ - ?

Розв’язання

Відповідно до умови головних максимумів дифракційної гратки (формула (17.9)), і з урахуванням умови задачі для максимумів порядку m1 і m2 можна записати:

 

\(\d\sin\varphi=m_{1}\lambda\),

(1)

 

\(\d\sin(\varphi+\Theta)=m_{2}\lambda\),

(2)

де \(\varphi\) – кут між нормаллю до ґратки і напрямком на максимум порядку m1 (рис.1), d – період гратки, що зв'язаний з числом штрихів на одиницю довжини співвідношенням

\(d=\frac{1}{N}\).

Представимо вираз (2) у вигляді

 

\(\frac{m_{2}\lambda}{d}=\sin\varphi\cos\Theta+\sin\Theta\cos\varphi\).

(3)

Оскільки кут \(\Theta\ll{1}\) (1,6° = 0,028 рад), то можна прийняти \(\cos\Theta=1\) та \(\sin\Theta=\Theta\) (рад). Крім того

\(\cos\varphi=\sqrt{1-\sin^{2}\varphi}\).

Зробивши ці підстановки у вираз (3), одержимо

\(\frac{m_{2}\lambda}{d}=\sin\varphi+\Theta\sqrt{1-\sin^{2}\varphi}\).

Підставивши вираз \(\sin\varphi=m_{1}\lambda/d\) з формули (1) в останній вираз, після перетворень знаходимо:

\(\lambda=\frac{\Theta}{N\sqrt{(m_{2}-m_{1})^{2}+m_{1}^{2}\Theta}}=\frac{\Theta}{N\sqrt{1+\Theta^{2}}}\approx\frac{\Theta}{N}\).

Обчислення дають:

\(\lambda=\frac{0,028}{45}\approx{620}\) нм.